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Two methods of thermal stress calculation by
Timoshenko’s method and Poritsky’s method for circular
cylinders and disks were discussed, and the results of
calculation were compared. The first method was given
by Timoshenko based on the integration of a temperature
X distance from central axis function, and the other was
that given by Poritsky based on multi-variant simulta-
neous equations which represent elastical balances of
principal stresses and strains in a cylinder and a disk.
Caiculations were carried out for the following four cases:
a solid cylinder, a cylinder with a concentric hole, a solid
disk and a disk with a concentric hole. The results ob-
tained by the two methods were identical for the four
cases. It was proved that the two methods were mathe-
matically equivalent.
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1. Introduction

The following methods were used to calculate stresses in
composites caused by difference in thermal properties of com-
ponent materials:

(a) Equations''® for thermal stress calculation were ap-
plied by replacing thermal expansion difference caused by
temperature difference with that caused by the difference in
expansion coefficient.' **

(b) Equations™ to calculate stresses in composites
formed by fusion or adhesion are adopted.

As stated above, there is a close relationship between these
two methods so that method b) can also be applied to the
calculation of thermal stress.'” When this was performed with
acylinder and disk, it was found that the results agree very well
with those of method a). Consequently, these methods were
further examined in detail to prove that they are mathemati-
cally equivalent. The present paper describes this process.

2. Calculation of Thermal Stress of Cylinder
and Disk: Timosheko’s Method

2.1. Case of Cylinder' :

Thermal stresses generated in a cylinder with axisymmetric
temperature distribution are represented by Eqs.(1.1)-(1.3) by
Timoshenko et al.

Radial stress:

GE (1, 1f
o= 1|k - rz_"DT-rdr} ........ (1.1
Tangential stress:
aF (1., 1 |
oy= 1= [b2K+ rZIoT'rd’J ........ (1.2)
Axial stress:

oF
o, = I—v (constant — T)

When the constant is determined with the assumption
that the integration of axial stress across the cross section
iszero'® L. Condition (T1);

the following result is obtained:
Axial stress:

__OE (2, '
o,= ]_V( K T} ............ (1.3)

in these cases
b

K= ‘rd

LTI’ r

where b is the radius of the cylinder, r is a distance from the
center; T is temperature as a function of r, ¢ is stress; the
subscripts of ¢ denote r: radial direction; 9: tangential direc-
tion, and z: axial direction; ¢ is the coefficient of thermal
expansion, £ is Young’s modulus; and v is Poisson’s ration. A
difference in T with location causes that in thermal expansion
o.-T, cansing thermal stress.

2.2. Case of Disk™

When introducing the equations in the previous section, if
the axial stress is assumed to be zero, the equations to repres-
ent the stresses in the disk are generated:;

L1
0,= aF [EK - ?J-OT-rdr}

1 1§
= —K+=) Trdr-T
o= oF {sz+ rJOT rdr ]

2.3. Cases with Holes

Assuming that ©, is zero on the inner surfaces of holes,
equations can also be derived for a cylinder and disk with
conceniric holes.

24. Calculation With Computer
If T-r is an integrable function with respect to r on a
computer language, both programming and calculation are
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easy. Even if the temperature distribution is represented by
continuously joined lines, or is represented by lines which are
connected stepwise, T-r is integrable and stress calculation can
be performed.

These equations can be used to calculate stress in a hetero-
geneous material when oT is replaced with a difference in the
expansion characteristic depending on location, *” and that in
thermally tempered glass plate when it is replaced with a

difference in expansion caused by nonuniform thermal hyster-
Ly}

esis.

3. Calculation of Thermal Stress of Cylinder
and Disk: Poritsky’s Method™

3.1. Case of Solid Cylinder

Assuming that each layer in a cylindrical seal is equivalent
with a tube or a cylinder subjected to pressures at inner, outer
and end surfaces, respectively (Fig.1), the stress distribution in
the seal is expressed in the following forms:

o,=A-B/FF ... ... ... (2.1
Co=A+B/F . . ... (2.2)
0,= € o e (2.3)

where A, B, and C are constants allocated for each layer.
Using these equations, the following conditions are written:
Conditions for the balance of force inside the seal:

stress is finite at r = 0
.................. Condition (P1);

g, is continuous at the boundaries
................... Condition (P2);

................... Condition (P3);

the integration of @, across the cross section is zero
................... Condition (P4).

Conditions of no fracture st boundaries and in layers require
continuities of strains and displacements, Continuity of tan-
gential strain e, at boundaries gives:

b)

Fig. 1. Mult-layered a) cy].mdnca] hermetic seal and b) disk-like

- 2.5. Application of Calculation
seal.
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1
= F\0e~ V(G2 + 622}} +ol, = eg
................... Condition (P5)

continuity of axial strain e,:

= E{G:I - V(G + GBI}} +af

= —{cﬂ -G+ Gez)} +of,= e,
................... Condition (P6)

Using these conditions, multi-variant, simultaneous linear
equations with A, B, and C as unknowns are established; and
stress in the cylinder can be calculated by solving them and
determining A, B, and C. Here, subscripts I and 2 designate
two adjacent layers.

In this derivation, thermal stress can be obtained when a
difference in expansion by a difference in materials is replaced
with that by a difference in temperature.

3.2. Case of Disk'”

When all C’s are set to zero in the process of establishing
equations in the previous section, a solution for a disk can be
obtained.

3.3. Cases with Concentric Hole
Equation can be derived using the same assumption as in
Section 2.3.

4. Examples of Calculation

First, the examples of calculation were described.

The material properties were assumed as follows:
E =7000kg/mm’, & =100 x 107°C”, and v = 0.25. These
values were close to those of soda lime glass. For the conve-
nience of comparison, the maximum temperature difference
was set to 100°C. The stress values in this case were within
Tkg/mm’,

4.1. Points in Calculation

In Poritsky’s method, temperature distribution is limited in
which temperature changes stepwise and discontinuously.
Consequently, the same stepwise temperature distribution was
also adopted in Timoshenko's method, although it could ac-
cept other types of temperature distribution, if it was univalent,
finite and T-r was integrable.

In applying Poritsky s method to thermal stress calculation,
the same values are given as the properties of all layers, so that
the “division by zero® error often appears. To counter this,
there are the following measures: the order of arranging equa-
tions is changed in the manner of trial and error; the order of
arranging variables is changed in the manner of trial and error;
and material constants are allowed to fluctuate unless they do
not affect conclusions (within 2% in this study). Here, the last
method was adopted with respect to £.

4.2. Verification by Calculation Examples

In the case of thermal stress, an (r/b)-T relation determines
an {r/b)-(stress) relation. Therefore, in Figs.2-8, not the abso-
lute value of  but only the central axis {» = 0) and peripheral
(r = b) were shown for the x-axis, while stress was given for
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Fig. 2. Thermaily induced radiat stress o, tangential stress G and
axial stress o: distributions along radius in a solid cylinder, The
ternperature distribution used for the calculation is shown in the
upper part of the figure.
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Fig. 3. Thermally induced radial stress o, tangential stress &g and
“axial stress ¢, distributions along radivs in a cylinder with a con-
centric hole.

The temperature distribution used for the calculation is shown in
the upper part of the figure.

the y-axis. Anexample of a solid cylinder is presented in Fig.2,
that of a cylinder with a concentric hole in Fig.3, that of a solid
disk in Fig.4, and that of a disk with a concentric hole in Fig.5.
In each case, calculation results by the two methods agreed
well, so the methods of calculation are not distinguished in the
figure.

5. Verification of Mathematical Equivalence

In the first step, it is verified that the two methods are
equivalent in the case of stepwise temperature distribution,
With respect to other temperature distributions, it can also be
said that both are equivalent, considering that they are the limit
of fine graduvation of the temperature axis of the stepwise
distribution,

5.1. Comparison of Equation Forms

First, it should be noted that the integration of T-# over the
interval of O~r is a continuous function. In Fig.6 where a part
of the stepwise temperature distribution curve is provided,
where the temperature is constant (75} in the mterval of G~H
(r = g~r = h) on the radial axis, and both neighbors have
different temperature values. Assuming that there is a general
point J {The value of a radius is set to a general value #) in the
interval of G~H, stress on the point J is discussed. The first
terms in the parentheses of Eqs.(1.1) and (1.2) are constant X,
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Fig. 4. Thermally nduced radial stress o, and tangential stress o
distributions along radius in a solid disk. The temperature distri-
bution used for the caleulation is shown in the upper part of the
figure. Stress : lkg/mm’/division.
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Fig. 5. Thermally induced radial stress o, and tangential stress de
distributions along radius in a disk with a concentric hole. The
temperature distribution used for the calculation is shown in the

upper part of the figure.
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Fig. 6. A schematic representation of a part of a step-like tempera-
ture distribution curve.

When the integration of the second term is rewritten by separa-
tion into integration in the range (= O~point G) and that in the
interval (point G~ point J), the following equation is obtained:

%J:T-rdr = % IjT-rdr + r—l,_ _[;Ts-rdr

_e 11,
-84
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Fig. 7. A test calculation of thermal stresses in a solid cylinder with
a continuous temperatire distribution.

Stress *¥Yrnm?
<

&

where @ = | Trdr is a constant in the interval of (G~H). This
q

result is utilized to introduce the following relations:

o,= A—B/PF,
Og = A+B;"r2

with

A aE[lK 5}

1-vipr 2
_ O 52]
B_]—V(Q 2g £l

which are identical in formula with Egs.(2.1) and (2.2). The
Eq.(1.3) is a constant in the interval (G~H), and this constant
C is given by:

of (2
C= m(sz—Ts]

and therefore, &, is expressed by Eq.(2.3).

5.2. Agreement of Boundary and Balance Conditions

Equation (1.1) is a continuous function and satisfies condi-
tion (P1). In addition, it is ebvious that it satisfies conditions
(P2) and (P3). When Eqs.{1.1) and (1.3) are substituted into
conditional Eqs.(P5) and (P6} for testing, it is found that the
Eqs.{1.1)-(1.3) satisfy conditional Eys.(P5) and (P6). Finally,
condition (T1) is the same as the condition {P4).

5.3. Equivalence

As stated above, in the case of stepwise temperature distri-
bution, stresses by Timoshenko’s method are expressed by the
same equations in the form as those of Poritsky’s method, and
they satisfy all of the conditional equations required by
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Poritsky’s method. Therefore, stresses by Timoshenko’s
method are that obtained as solutions by Poritsky’s method at
the same time. [n other words, both methods are mathemari-
cally equivalent and equal. This is also true even with a large
number of intervals of temperature distribution and the narrow
width of each interval.

The temperature distribution in a general form can be
regarded as the limit of stepwise distribution with narrow
intervals so that the same conclusion can also be obtained in
this case.

Figure 7 presents an example of calculating the thermal
stresses of a cylinder by Timoshenko’s method with respect to
a continuous temperature distribution without steps.

Also, in the case of a disk, the same conclusion can be
derived by a similar process.

Furthermore, the same process and conclusion can be ap-
plied to a cylinder and disk with concentric holes.

6. Conclusion

It was proved that the expressions of siresses and the
processes of calculation in Timoshenko’s method and
Poritsky’s method are apparently quite different, and yet de-
tailed study reveals that both are mathematically equivalent. It
can be said that this information has further clarified the
essence of the two methods. As stated in the Introduction,
these methods have an extensive application range, and further
utilization is recommended.

With some modification, the methods are also applicable to
solid and hollow spheres.
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